龍谷大学 > 理工学部 > 数理情報学科 > 樋口 > 担当科目 > 2019 年 > 線形代数

線形代数テスト 2b

樋口さぶろお¹ 配布: 2019-07-30 火 更新: Time-stamp: "2019-08-01 Thu 07:19 JST hig"

テスト 2b 参加案内

- 1. 指定された用紙に解答しよう.
- 2. 問題文に現れない記号を使うときは、定義を記そう、
- 3. 過程の要不要は問題ごとの指示に従おう.
- 4. 行列の成分 0 は、空白で代用してよい、行列式の計算や行基本変形では、複数回の基本変形の結果を 1 つの = や \rightarrow で表してよい、操作 |,||,||| の表示は必須でない、

1

結果のみを採点

ベクトル

$$\boldsymbol{a} = \begin{bmatrix} -2 \\ -1 \\ 3 \end{bmatrix}, \boldsymbol{b} = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}, \boldsymbol{c} = \begin{bmatrix} 0 \\ -5 \\ -2 \end{bmatrix},$$

を考える.

- 1. 内積 $\mathbf{a} \cdot \mathbf{b} = (\mathbf{a}, \mathbf{b})$ を求めよう.
- 2. 外積 $\mathbf{b} \times \mathbf{c}$ を求めよう.
- 3. スカラー3重積 $a \cdot (b \times c)$ を求めよう.
- 4. ベクトルの3個組 $\langle a, b, c \rangle$ は \mathbb{R}^3 の基底かどうか答えよう.

2

結果のみを採点

変数 x_1, x_2, x_3, x_4, x_5 に対するある連立 1 次方程式の拡大係数行列を, 行基本変形で簡約行列にしたもの \tilde{A} を次に示す.

連立1次方程式の解を (パラメタ $s, \ldots \in \mathbb{R}$ を使って) 書こう.

¹Copyright © 2019 Saburo HIGUCHI. All rights reserved. hig@math.ryukoku.ac.jp, https://hig3.net(講義のページもここからたどれます), へや:1 号館 5 階 507

3

結果のみを採点

$$A = \begin{bmatrix} 0 & 3 & 6 & 9 \\ 1 & 6 & 9 & 16 \end{bmatrix}.$$

4

結果のみを採点

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 4 & 0 & 3 \end{bmatrix}.$$

5

結果のみを採点

 $_{\sim}$ 次の行列の逆行列 A^{-1} を求めよう.

$$A = \begin{bmatrix} 1 & -6 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 \end{bmatrix}.$$

6

過程も記述すること

次の行列 A の行列式の値を求めよう.

$$A = \begin{bmatrix} 1 & -6 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 2 & -12 & 0 & 1 \\ 0 & 0 & 2 & 0 \end{bmatrix}.$$

7

過程も記述すること

 \overline{P} 次の行列を $P^{-1}AP = \Lambda$ と対角化する. 正則行列 P と対角行列 Λ を求めよう.

$$A = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 4 & 3 \\ 0 & 1 & 2 \end{bmatrix}.$$

次のことを導かずに使ってよい.

- A の固有方程式の解は, $\lambda = 5(2 重解), 1$ である.
- 固有値 $\lambda = 1$ に対応する固有ベクトルは $\begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$ である.

龍谷大学 > 理工学部 > 数理情報学科 > 樋口 > 担当科目 > 2019 年 > 線形代数

線形代数テスト 2b 略解

樋口さぶろお² 配布: 2019-07-30 火更新: Time-stamp: "2019-08-01 Thu 07:19 JST hig"

配点 計100点.

1

$$\begin{array}{ccc}
1. & -7 \\
2. & \begin{bmatrix}
-6 \\
+4 \\
-10
\end{bmatrix}.
\end{array}$$

3.
$$-22.$$

4.
$$\det[abc] = a \cdot (b \times c) \neq 0$$
 なので基底である.

2

$$x_1 = s,$$

 $x_2 = 17 + 2t - 3u,$
 $x_3 = 19 - 4t + 5u,$
 $x_4 = t,$
 $x_5 = u.$

$$(s, t, u \in \mathbb{R})$$

3

$$\begin{bmatrix} 0 & 3 & 6 & 9 \\ 1 & 6 & 9 & 16 \end{bmatrix} \xrightarrow{\text{1}:2:2:1} \text{ left} \begin{bmatrix} 1 & 6 & 9 & 16 \\ 0 & 3 & 6 & 9 \end{bmatrix} \xrightarrow{\text{1}:1:2\times2} \xrightarrow{\text{2}:\frac{1}{3}\times2$} \text{ fin} \begin{bmatrix} 1 & 0 & -3 & -2 \\ 0 & 1 & 2 & 3 \end{bmatrix}.$$

²Copyright © 2019 Saburo HIGUCHI. All rights reserved. hig@math.ryukoku.ac.jp, https://hig3.net(講義のページもここからたどれます), へや:1 号館 5 階 507.

4

特性方程式 $\det(A - \lambda E) = -(\lambda + 1)(\lambda - 1)(\lambda - 5) = 0$. 固有値は $\lambda = \pm 1, 5$.

5

 4×8 行列 [A|E] を行基本変形で簡約行列にすると, $[E|A^{-1}]$ となる.

$$\begin{bmatrix} 1 & -6 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\begin{bmatrix} 1 & 1 \\ 1 & 2 \times 2 \end{bmatrix}} \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 2 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 2 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 2 \end{bmatrix} \xrightarrow{\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

よって,

$$A^{-1} = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & \frac{1}{3} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

6

$$\det\begin{bmatrix} 1 & -6 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 2 & -12 & 0 & 1 \\ 0 & 0 & 2 & 0 \end{bmatrix} \xrightarrow{3 \cdot 3 + (-2) \times 1} \det\begin{bmatrix} 1 & -6 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 \end{bmatrix}$$

$$3 \cdot 4 \cdot 3 - \det\begin{bmatrix} 1 & -6 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = -(1 \cdot 3 \cdot 2 \cdot 1) = -6.$$

講評

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \rightarrow - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix} \rightarrow 2 \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$$

は, 行基本変形を複数行った変形としては正しいですが, 行列式の計算過程としては正しくありません. つまり, 連立方程式の解は変わりませんが, 行列式の値は変わってしまいます.

これらは,

$$\left[\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix} \right] \rightarrow \left[\begin{smallmatrix} -1 & 0 \\ 0 & -1 \end{smallmatrix} \right], \quad \left[\begin{smallmatrix} 2 & 4 \\ 1 & 3 \end{smallmatrix} \right] \rightarrow \left[\begin{smallmatrix} 2 & 4 \\ 2 & 6 \end{smallmatrix} \right]$$

と書いても等価ですが、右辺の行列式の値は同じではありません。つまり (-1) や 2 のような係数をメモする場所として、行列の前の係数というのは適切でないのです。 \det の前の係数なら正しく記録できます。

$$\det\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = -\det\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix} = 2\det\begin{bmatrix} 1 & 2 \\ 2 & 6 \end{bmatrix}.$$

det の外側にある係数, 内側にある係数は意味が違います.

7

$$\lambda_1=1$$
 の固有ベクトル $m{x}_1=\left[egin{array}{c}0\\1\\-1\end{array}
ight]t.$ ($t\in\mathbb{R}$)

 $\lambda_2 = 5$ の固有ベクトルを $(A - 5E)\boldsymbol{x}_2 = \boldsymbol{0}$ を解いて求めると, $\boldsymbol{x}_2 = \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix} s + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} t$. $(s,t \in \mathbb{R}, (s,t) \neq (0,0))$

よって,
$$P=\begin{bmatrix}0&0&1\\1&3&0\\-1&1&0\end{bmatrix}$$
, $\Lambda=\begin{bmatrix}1&0&0\\0&5&0\\0&0&5\end{bmatrix}$ とすると, $P^{-1}AP=\Lambda$ と対角化される.