龍谷大学 > 理工学部 > 数理情報学科 > 樋口 > 担当科目 > 2007 年 > 集合 位相 + 演習 > 11 回め 「目次 | 前回 | 次回 | 今回の問題 |

集合 位相+演習

樋口さぶろお¹ 配布: 2007-12-04 Tue 更新: Time-stamp: "2007-12-14 Fri 11:14 JST hig"

11 内部・外部・境界

11.1 閉集合

11.1.1

略解 閉集合

3. 開集合

5. 開集合でも閉集合でもない

7. 開集合

- 2. 開集合
- 4. 閉集合
- 6. 開集合
- 8. 閉集合

11.1.2

略解 閉集合

- 3. 開集合でも閉集合でもない
- 5. 閉集合
- 7. 開集合

- 2. 開集合でも閉集合でもない
- 4. 開集合でも閉集合でもない
- 6. 開集合でも閉集合でもない
- 8. 開集合であり閉集合でもある

11.2 有理数・無理数・実数の微妙な性質

11.2.1

略解

- 1. $\max A$, $\min A$, $\inf A$ は存在しない. $\sup A = \pi$. $\max B$, $\sup B$ は存在しない. $\min B = \inf B = \pi$.
- 2. $\min C$, $\inf C$ は存在しない. $\max C = \sup C = 3$. $\max D$, $\sup D$ は存在しない. $\min D = \inf D = 4$.
- 3. $\max E$, $\min E$, $\inf E$, $\sup E$ は存在しない. $\max F$, $\min F$, $\inf F$, $\sup F$ は存在しない.

11.2.2

略解 $\mathbb{Q},\mathbb{R}\setminus\mathbb{Q}$ は開でも閉でもない.

¹Copyright ©2007,2008 Saburo HIGUCHI. All rights reserved.
hig@math.ryukoku.ac.jp, http://hig3.net(講義のページもここからたどれます), へや:1 号館 5
階 502.

略解 模範解答をつくろうプロジェクトで使用するかも

外点・境界点 11.3

11.3.1

畸解 境界点

- 3. 境界点
- 5. 外点, $\epsilon < 101$.
- 7. 外点, $\epsilon \leq \min\{|1-x|, |-1-x|\}$.
- 2. 内点, $\epsilon < 1$
- 4. 内点, $\epsilon \leq \frac{3}{2}$
- 6. 内点, $\epsilon \leq \min\{|1-x|, |-1-x|\}$.

11.3.2

略解 開境界点

- 4. 外点, $\epsilon < 1$
- 2. 内点, $\epsilon \leq 2$ 3. 内点, $\epsilon \leq \frac{1}{2}$ 5. 内点, $\epsilon \leq 2 d(x,O)$. 6. 境界点

7. 外点, $\epsilon < d(x, O) - 2$.

外部・境界 11.4

11.4.1

略解 $A^{i} = (0,1), A^{e} = (-\infty,0) \cup (1,2) \cup (2,+\infty), A^{f} = \{0,1,2\}, A^{a} = [0,1] \cup \{2\}$

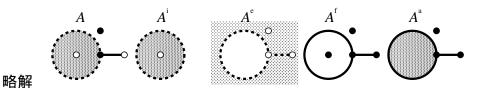
11.4.2

EXAMPLE $A^{i} = A$, $A^{e} = (-\infty, 0)$, $A^{f} = \{0\}$, $A^{a} = [0, +\infty)$.

- (2) $A^{i} = A$, $A^{e} = \emptyset$, $A^{f} = \mathbb{N}$, $A^{a} = \mathbb{R}$.
- (3) $A^{i} = \emptyset$, $A^{e} = \mathbb{R} \setminus (A \cup \{0\})$, $A^{f} = A \cup \{0\}$, $A^{a} = A \cup \{0\}$.

解説 実数 と 実数の集合 を混同した解答をよく見かけました. 気をつけましょう.

例えば、実数の集合を答えるところで、 $\{\mathbb{R}\}$, $\{\mathbb{N}\}$, $\{\emptyset\}$ など、 \mathbb{R} , \mathbb{N} , \emptyset などはそれだけで 集合を表す記号ですから、さらに {} にいれるのは変です。


また, $\{\mathbb{R}-\frac{1}{n}\}$ という答えも見かけました. \mathbb{R} は集合, $\frac{1}{n}$ は実数ですから, その間で演 算をすることはできません. たぶん $\mathbb{R}\setminus\{rac{1}{n}\mid n\in\mathbb{N}\}$ を意図した答案でしょう. これなら 第2項が集合になりますから、 \mathbb{R} との間で差集合をとることが可能になります.

 $\{rac{1}{n}\mid n\in\mathbb{N}\}=(0,1)$ と思ってる答案も時々見かけました. 左辺はとびとびの集合なの で、べたっとある右辺とは違います(濃度で言うと左辺は №0、右辺は №です).

また, $+\infty$, $-\infty$ は数ではなく, \mathbb{N} , \mathbb{R} などの元ではなく, 等式, 不等式にも参加しませ ん. 区間 $(0,1) = \{x \in \mathbb{R} \mid 0 < x < 1\}$ ですが, $(0,\infty)$ は $\{x \in \mathbb{R} \mid 0 < x\}$ の略記にすぎ ません. したがって, $\mathbb{R}\setminus(0,\infty)=(-\infty,0]$ であり, $+\infty\notin(\mathbb{R}\setminus(0,\infty))$ です.

集合 位相 + 演習 11 回めの解答 (2007-12-04 Tue) 3 3. では $0 \in A^f$ だというところがいちばんのポイントです。自分は A の元じゃないけ ど,どんなに小さい ϵ に対しても $N(x;\epsilon)$ は A の元を含むからなあ (例 $1/([2/\epsilon])$. ここで [x] は x の整数部分).

11.4.3

11.4.4

略解
$$\mathbb{Q}^{i} = \emptyset$$
, $\mathbb{Q}^{e} = \emptyset$, $\mathbb{Q}^{f} = \mathbb{R}$, $\mathbb{Q}^{a} = \mathbb{R}$.
$$(\mathbb{R} \setminus \mathbb{Q})^{i} = \emptyset$$
, $(\mathbb{R} \setminus \mathbb{Q})^{e} = \emptyset$, $(\mathbb{R} \setminus \mathbb{Q})^{f} = \mathbb{R}$, $x(\mathbb{R} \setminus \mathbb{Q})^{a} = \mathbb{R}$.

