回帰分析

樋口さぶろお https://hig3.net

龍谷大学理工学部数理情報学科

確率統計☆演習 L05(2020-10-26 Mon) 最終更新: Time-stamp: "2020-10-24 Sat 14:15 JST hig"

今日の目標

• 単回帰の回帰係数, 切片を手で求められる

岩薩林 確率・統計 §9 を先取り

• Excel で回帰分析ができる

L04-Q1

Quiz 解答:分散共分散をモーメントから

L04-Q2 Quiz 解答:共分散 $\overline{x} = 4, s_x^2 = 4, s_x = 2.$ $\overline{y} = 13, s_x^2 = 122/5 = 24.4, s_y = \sqrt{122/5} = 4.94.$ 共分散 $s_{xy} = \frac{1}{5}[(1-4)(5-13) + (3-4)(15-13) + (4-4)(14-13) + (5-4)(11-13) + (7-4)(20-13)] = 41/5 = 8.2.$ 相関係数 $r = \frac{41/5}{2 \cdot \sqrt{122/5}} = 0.83.$ L04-Q3

Quiz 解答:相関係数の性質

1 かわらない.

🝳 かわらない.

L04-Q4 Quiz 解答:相関係数

相関係数はすべて 0.

ここまで来たよ

- 統計量の単位・次元
- 回帰分析
- Excel で 2 変量統計

単位 (物理量の次元)

物理量は次元を持つ (m, kg, s). 物理量のデータ, 統計量も次元を持つ.

- 両辺の単位は等しい
- 加減は同じ単位の量の間でしかできない
- 積/商の量は単位もそうなる

質量 x = 10, 20, kg, 速度 y = 1, 2, m/s の例で.

ここまで来たよ

- 統計量の単位・次元
- 回帰分析
- Excel で 2 変量統計

回帰分析 岩薩林 確率 · 統計 §9

回帰 (regression), 直線回帰=単回帰分析=1 変数回帰分析 2変量データ (x, y) が 相関係数 $r_{xy} = \pm 1$ に近い \Leftrightarrow 散布図で (x, y) がほぼ直線に載る その直線 (回帰直線)の式 $y = \beta x + \alpha$ を知りたい!

<br/ つまり 回帰係数 β , 定数項 (切片) α を決めたい.

y: 目的変数 (従属変数) x: 説明変数(独立変数) 何でそんなことしたいの?

 法則を見つけたい x から y を予測したい 物理実験

回帰分析 回帰分析

回帰直線の決め方

① 定規をあてて '真ん中' を通るように
 ② 最小2乗法で

小中学校

数值計算法,物理実験

最小2 乗法

直線からのずれの $2 \oplus d^2$ の合計

$$L(\alpha, \beta) = \sum_{i=1}^{n} d_i^2 = \sum_{i=1}^{n} (y_i - (\beta x_i + \alpha))^2$$

の最小条件 $\frac{\partial L}{\partial \alpha} = \frac{\partial L}{\partial \beta} = 0$ で α, β を決める.

直線回帰の公式

回帰直線 _{岩薩林 確率・統計} (9.10)

 x_i, y_i (i = 1, ..., n) の平均値を $\overline{x}, \overline{y}$, 標準偏差を S_x, S_y , 相関係数を r_{xy} とする. このとき回帰直線は,

$$\boldsymbol{y} = \frac{r_{xy} \times S_y}{S_x} \times (\boldsymbol{x} - \overline{x}) + \overline{y} = \beta \boldsymbol{x} + \alpha.$$

傾きは
$$\beta = \frac{r \times S_y}{S_x} = \frac{S_{xy}}{S_x^2}$$
, 切片は $\alpha = (\, (\overline{x}, \overline{y}) \,$ を通るような値)

$$\beta$$
: 回帰係数 ($x \in 1$ だけ変え
たときの y の変化量)
 $0 \le r_{xy}^2 \le 1$: 決定係数 (あて
はまりのよさ)
誤差 $L(\alpha, \beta) = N(1-r_{xy}^2)S_y^2$.

回帰直線の傾きのおぼえ方Ⅰ

広がり方

散布図上のデータ点の分布は, 横 $2S_x$, 縦 $2S_y \rightarrow$ 傾き $\frac{S_y}{S_x}$ くらい? しか~し, 傾きには正負があるし, 相関がなかったら傾きを0 にしたいの で, 相関係数 r_{xy} をかけ算しておく. 単位チェック (x,y) の単位が (m,kg) だとする. r_{xy} は無次元. 単位無し. 左辺 y (kg). 右辺 $r_{xy} \times \frac{S_y(kg)}{S_x(m)} \times (x(m) - \bullet) + \alpha(kg)$ で, S_y/S_x かけると単位があう. 回帰分析 回

回帰分析

岩薩林 確率・統計 例題 9.2, 9.3, §9 問題 3,4,5, §9 練習問題 1

L05-Q1

Quiz(回帰係数と回帰直線))
ある2変量データ (<i>x</i> , <i>y</i>) につ	ついて次のことがわかっている.
x の平均値 \overline{x}	9
y の平均値 \overline{y}	-4
x の分散 s_x^2	49
y の分散 s_y^2	36
x,y の共分散 s_{xy}	-25
(x,y) のデータの個数 n	16
このとき, x を説明変数, y を	<u> と目的</u> 変数とする回帰直線の式を, <i>x</i> , <i>y</i> の式で
書こう. 整理しなくてよい.	

ここまで来たよ

- 統計量の単位・次元
- 回帰分析
- Excel で2変量統計

Excel 使用の準備 (復習)

ない.

表計算ソフトウェア (Excel) による分析高校 数学1

メニューからデータ範囲を指定,または関数の引数にデータ範囲を指定.		
	メニューベース	関数ベース
平均值,分散,	データ > 分析 > データ分析	平均值 average, 分
標準偏差	> 基本統計量 > 統計情報 (分	散 var.p, 標準偏差
	散は要 $(n-1)/n$ 倍)	stdev. <mark>p</mark> , 最頻值 mode
(四)分位数	データ > 分析 > データ分析	中央値 median, 四分位
	> 順位と百分位数	数 quartile, 百分位数
		percentile. <mark>inc</mark>
順位,分位	データ > 分析 > データ分析	順位 rank, 百分位
	> 順位と百分位数	percentrank.inc
ヒストグラム,	挿入 > グラフ > ヒストグラ	グラフ
箱ひげ図	ム, 箱ひげ図	
散布図	挿入 > グラフ > 散布図	
共分散, 相関係	データ > 分析 > データ分析	covar=covariance <mark>.p</mark> ,
数	> 共分散, 相関	correl
回帰分析	データ > 分析 > データ分析	linest
	> 回帰分析	
クロス集計表	挿入 > テーブル > ピボット	
	テーブル	

メニューベースの回帰分析

- 重相関 R = 相関係数の絶対値 |r_{xy}| 符号は表示されない
- 重決定 R2 = 決定係数 r_{xy}^2
- 切片 = 回帰直線の切片 α
- X 値 1(またはラベルで指定した変数名) = (X 値 1 の) 回帰係数 β

メニューベースでデータ分析をするときの注意

列=縦, データを n 個並べる.

▶ 縦横を変えるときは,形式を選択してペースト > 行列を入れ替える

- 「ラベル」は,1行目(または1列目)に書かれている変数名(身長) (データ(160cm)でなく).ラベルを範囲に含めるか含めないか, チェックボックスがあることが多い.
- *p* = 2 次元データの, 共分散 *S_{xy}* や相関係数 *r_{xy}* の出力は *p*×*p* の対称行列.

$$\begin{bmatrix} S_{xx} = S_x^2 & S_{xy} \\ S_{yx} & S_{yy} = S_y^2 \end{bmatrix}, \qquad \begin{bmatrix} r_{xx} = 1 & r_{xy} \\ r_{yx} & r_{yy} = 1 \end{bmatrix}$$

- なぜか, データ分析 > 共分散はそのままで正しい. <u>n-1</u> する必要なし.
- なぜか, データ分析 > 相関はもちろんそのままで正しい.

重回帰分析

目的変数 価格 y 円 説明変数 質量 x_1 kg, 糖度 x_2 $y = \beta_1 x_1 + \beta_2 x_2 + \alpha$ 直線でなく平面の方程式 回帰係数は説明変数の個数だけ, 切片はひとつ Excel の回帰分析の出力

• 切片 = 回帰直線の切片
$$\alpha$$

- X値1(またはラベルで指定した変数名) = (X値1の)回帰係数 β₁
- X 値 2,…(またはラベルで指定した変数名) = 重回帰の係数 β₂,…

Excel の共分散,相関の出力

p=3次元データの, 共分散 $S_{\bullet \bullet}$, 相関 $r_{\bullet \bullet}$ の出力は p imes p の対称行列

$$\begin{bmatrix} S_{xx} = S_x^2 & S_{xy} & S_{xz} \\ S_{yx} & S_{yy} = S_y^2 & S_{yz} \\ S_{zx} & S_{zy} & S_{zz} \end{bmatrix}, \begin{bmatrix} r_{xx} = 1 & r_{xy} & r_{xz} \\ r_{yx} & r_{yy} = 1 & r_{yz} \\ r_{zx} & r_{zy} & r_{zz} = 1 \end{bmatrix}$$

確率統計 Ⅱ